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An equation recently developed bythe present author to describe the modulus of particulate 
composites as a function of the volume fraction of particles was modified in this study to 
describe modulus as a function of porosity. This new equation was applied to available 
modulus literature for ceramics where voids were the particulate phase. By varying the 
porosity interaction coefficient, c~, this new generalized void/modulus equation was shown 
to be able to yield equations previously used to predict modulus as a function of voids for 
ceramics. Wang theoretically described the mode of porosity interaction during compaction 
with a constant, ~, to calculate the void/modulus relationship for three different compaction 
conditions. The generalized void/modulus equation developed in this study fit Wang's 
theoretical data exceptionally well, even though the porosity interaction coefficients, c~, 
obtained did not agree closely with Wang's values of ~. Wang also experimentally measured 
the porosity and Young's modulus of manufactured alumina rods prepared with spherical 
and "egg-shaped" powders. The optimum fit for spherical particles occurred at c~=0.9 and 
an initial porosity of Pi=0.405 and for "'egg-shaped" particles at ~= 1.05 and Pi=0.475. The 
generalized void/modulus the equation for ~= - 1 yields an equation that has the same form 
as Wang's proposed empirical equation that utilized two empirical constants, b and c. 
Wang's experimental data fitted with his proposed empirical equation gave a positive value 
for the constant co l  0.982 which corresponded to a negative value of Pi of -0.0743 which 
was not defined in the theoretical considerations developed in this study. While this value of 
the initial porosity, Pi, does give a better fit of the data for the interaction constant ~= - 1, it 
still did not fit all the data as well as the results calculated for interaction coefficients nearer 
1.0. The results of this study have shown that an excellent fit of most void/modulus data can 
be obtained using the generalized void/modulus equation developed in this study without 
making assumptions inconsistent with the theory presented. 

1. I n t r o d u c t i e n  
The void content of ceramic and metallic parts pre- 
pared by powder consolidation is typically minimized 
using processing techniques such as sintering, hot 
pressing, and hot isostatic pressing (HIPing) [1-5]. 
The large void concentration occurring in the starting 
powder is continually reduced with processing until 
a final part is prepared with very low void content. 
Mechanical properties, i.e. modulus and strength, are 
directly related to the residual volume fraction of 
voids in these parts [1-5]. Different processing tech- 
niques apparently reduce the void content in different 
ways which can result in different relationships bet- 
ween mechanical properties and void content [3, 5]. 
For this reason, mathematical formulations that effec- 
tively describe the relationships between mechanical 
properties and void content can be useful when trying to 
understand better these different processing techniques. 

A number of e• for the effect of porosity on 
the elastic constants of solids have been proposed by 
various investigators [1, 5-14]. Several significant ex- 
pressions relating the effects of voids on the modulus 

of brittle solids have recently been reviewed by Phani 
and Niyogi [14]. 

One example of such an expression is Spriggs equa- 
tion which can be written as 

E = Eo e-bP (1) 

where E is the Young's modulus of a porous polycrys- 
talline solid, Eo the Young's modulus of a non-porous 
polycrystalline solid, b a constant, and P the porosity 
or fractional pore volume of the solid. 

Some authors [13, 14] have expressed a concern 
that Spriggs equation does not satisfy the boundary 
condition that E = 0 for P = 1, Phani and Niyogi 
[14] have further indicated that the boundary condi- 
tion of E = 0 should occur at some critical porosity, 
Posit, such that Petit -< 1 where the elastic modulus, E, 
becomes zero. Similarly, other modulus/porosity 
equations in the literature do not identify a Porit in 
their formulations. 

Because a powder by definition is a group of p~r- 
ticles that do not stick together in tension, then the 
elastic modulus of the starting powder must also be 
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zero. The void content of this starting powder, P~, 
would be expected to be the maximum expected dur- 
ing ceramic processing. Therefore, it is possible to 
state that the modulus of a porous solid should ap- 
proach zero at some critical value of porosity, Pcrit, 
which is, in fact, the initial porosity, Pi. 

Available empirical equations in the literature gen- 
erally describe the modulus at low void concen- 
trations adequately; however, they have had limited 
success in describing the effect of voids at high concen- 
trations [5, 14]. In addition, little consideration has 
been given to the theoretical significance of the con- 
stants generated from these empirical equations. 

Several attempts have been made in the literature to 
describe the theoretical effect of void size reduction on 
the mechanical properties as a result of  ceramic 
and/or metallic powder compaction processing [3, 4, 
15]. Further discussion of the evaluation o f  these 
theoretical concepts will be explored in the later Sec- 
tion of this paper. 

A new generalized equation that addresses the 
modulus of particulate composites has recently been 
derived in a series of articles [16-20]. This new gener- 
alized equation for the first time addresses the detailed 
effects of particle size, particle-size distribution and 
packing fraction. The initial slope of this~equation, 
[G], at particle concentrations near zero has  been 
defined as the "intrinsic modulus" [20]. The sign of 
this initial slope or intrinsic modulus was found to be 
determined by the ratio, Gf/Go, of the modulus of the 
filler particle, Gf to the modulus of the matrix, Go. 
When Gf/Go > 1 then the intrinsic modulus, EG], is 
positive and when Gf/Go < 1 then the intrinsic 
modulus, EG], is negative. In a previous paper [20] 
this new equation was successfully applied to available 
literature data where the modulus of the particle was 
greater than the modulus of the matrix. This new equa- 
tion was found to predict successfully literature data for 
modulus as a function of the volume concentration of 
particles over the full range of particulate concentration. 

In this paper this new equation will be applied to 
literature data where the modulus of the particle, in 
this case a void, is significantly less than the modulus 
of the matrix. In addition, it will be shown that equa 7 
tions previously used to predict modulus as a function 
of voids can also be obtained from this new equation 
by varying the porosity interaction coefficient, (~. 

2. Description of a new generalized shear 
modulus equation 

The processing of a ceramic from a starting powder 
will consist of consolidating hard particles and com- 
pacting voids such that at any time 

q). + P = 1 (2) 

where q). is the hard particle and/or grain volume 
fraction, and P is the porosity or void volume fraction. 
This last relationship is probably most easily defined 
for the starting powder which consists of hard par- 
ticles and the initial maximum porosity, Pi, that the 
ceramic component will see during its processing life. 
At this point it is useful to address the evaluation of 
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the starting powder as a particulate composite where 
the void phase would initially be considered to be the 
matrix and the hard particles the particulate phase. 

In an earlier paper [20] this author showed that the 
following generalized equation can be used to describe 
the modulus-particulate concentration relationship of 
particulate composites. 

/ 
(3) 

Gf 

(4) 

F o r  the case where ~ = 1, the resulting equation can 
be written as 

ln(GUGo)= - [G]q~, In ( %  - q)~ (5) 
k 0~= / 

o r  

= (6) 
\ q0, / 

where Gc is the composite shear modulus, Gf the shear 
modulus of the filler, Go the shear modulus of the 
matrix, [G] the intrinsic modulus, Vo Poisson's ratio, 

particle interaction coefficient, q~ particle volume 
concentration in the matrix, and % the particle pack- 
ing fraction. 

It has previously been shown [t7] that the max- 
imum volume fraction occupied by a given group of 
particles within a confined volume defined as the par- 
ticle packing fraction, q~,, can be evaluated from the 
particle-size distribution as described by the following 
equations 

q)n  = q )nu l t  - -  ( (~nuXt  - -  q ) m )  e a [ 1  (Ds/D,)] (7) 

q)nult ~-- 1 - (1 - f ~ r n )  n ( 8 )  

~ Ni D5 
Ds - i= 1 (9) 

Ni D4 
i = 1  

~ NiDi 
D1 - i=l (10) 

i = l  

where Dx is the'xth average particle diameter, n num- 
ber of different particle diameters in a batch combina- 
tion, Ni the number of particles of the ith particle 
diameter, D, the diameter of the ith particle size, u (a 
constant) = 0.268, q), the packing fraction, q),uit the 
ultimate packing fraction for a specific number of 
particle sizes, and q)m the monodisperse packing frac- 
tion. If an adequate description of the particle-size 
distribution is available, the Ds and D t particle size 
averages described by Equations 9 and 10 can be 
replaced with more convenient equations for the 
evaluation of particle blends that have been developed 
in previous papers [17, 18]. 



It has also been previously shown [19] that the 
optimum particle-size distribution to give the max- 
imam value for the Ds/DI ratio for a blend of n differ- 
ent monodisperse particles can be calculated. The 
volume fraction of monodisperse particle of size i,f/, in 
a blend of n different exactly monodisperse particles to 
obtain a maximum value of the ratio Ds/D1 can be 
calculated as [19] 

V i D~/2 
- - ( 1 1 )  f~ vT 

Dli /2 L 
i=1 

where Vi is the volume of particles of the ith particle 
size in the blend, and Vr the total volume of all 
particles in the particle blend. 

Based on the equations presented in this section it is 
possible to optimize the particle-size distribution and 
to minimize the void content of the starting powder 
used in processing a ceramic component. Such 
a smaller void volume fraction in the starting powder 
should result in a ceramic with acceptable strength 
and modulus with less high-pressure processing. To 
appreciate this concept better, it is useful to show how 
the equations presented in this section have been used 
to predict successfully the optimum compositions and 
the optimum packing fraction for the data generated 
by McGeary [21]. 

3. Comparison of theoretical volume 
fraction, f ,  and packing fraction (p, 

3.1 Predictions with McGeary's experi- 
mental results 

McGeary [21] developed the experimental optimum 
composition for several binary, tertiary and quater- 
nary mixtures of spherical particles. Several optimum 
compositions generated by McGeary [21] are sum- 
marized in Table I together with the diameters mak- 
ing up the particles in each of these mixtures. The 
predicted optimum compositions calculated using 
Equation 11 for these diameter combinations are also 
included in Table I. The maximum packing fraction, 

q)n, measured by McGeary [21] for several particle 
blends have been included in Table I together with the 
maximum packing fractions predicted using Equa- 
tion 7. For values of Ds/Dt greater than 40 it is easy to 
show that the maximum packing fraction calculated 
using Equation 7 will essentially equal the ultimate 
packing fraction. For reference, the value of Rmax is 
simply the ratio of the largest particle diameter to the 
smallest particle diameter in each blend. It has been 
shown [17] that the maximum possible value of Ds/D1 
is equal to R~a~. 

The ultimate packing fractions, q~,~n, in Table I 
were calculated from Equation 8 using the monodis- 
perse packing fraction (q)m = 0.589) as determined by 
Lee [22]. This monodisperse packing fraction was 
obtained for loose random packing from literature 
results obtained from five different sets of authors 
[22]. Further details of the simplified calculation pro- 
cedures used to generate the results in Table I will not 
be presented here, but are available elsewhere [19] to 
the interested reader. Some observations indicated 
from a comparison of the theoretical and experimental 
results in Table I include: 

(i) the volume fractions calculated using Equation 
11 agree very well with the optimum volume fractions 
determined experimentally by McGeary [21] for bi- 
nary, tertiary and quaternary blends; 

(ii) the packing fractions, q%, calculated using 
Equation 7 agreed very well with the packing fractions 
determined experimentally by McGeary [21]. 

Values of the ultimate packing fraction, 9,u~t, cal- 
culated for particle blends with up to six (n = 6) 
monodisperse particles are compared with 
McGeary's measured maximum packing fractions, 
%, for blends with up to four monodisperse 
particles (n = 4) in Fig. 1. Note that in general, it 
does not appear necessary to use more than six par- 
ticles to obtain the initial packing of particles down 
to less than 2% voids. This would suggest that the 
void content of the starting powder blend for ceramic 
or metallic parts could be significantly reduced by 
simply using a blend of up to six monodisperse par- 
ticles. 

TAB L E I Comparison of theoretical predictions with McGeary's particle composition measurements 

i D i fi All Ds/D1 /max Qm Qnult Qn mQn 
(in.) Theory Measured (% Diff.) Theory Measured (% diff.) 

1 0.5050 0.645 0.607 3.76 
2 0.0610 0.244 0.230 - 0.60 
3 0.01t0 0.095 0.102 - 0.69 
4 0.0016 0.036 0.061 - 2.47 288.7 315.6 0.589 0,971 0.971 0.951 2,05 

1 0.5050 0.669 0.647 2.18 
2 0.0610 0.232 0.244 -- 1.15 
3 0.0J 10 0.099 0.109 1.03 41.5 45.9 0.589 0.931 0.931 0.898 3.26 

1 0.1240 0.708 0.670 3.85 
2 0.0110 0.211 0.230 - 1.90 
3 0.0016 0.080 0.100 - 1.95 72.1 77.5 0.589 0.931 0.931 0.9 3.06 

1 0.5050 0.742 0.726 1.61 
2 0.0610 0.258 0.274 - 1.61 7.7 8.28 0.589 0.831 0.79l 0.8 - 0.91 

1 0.5050 1.000 1.000 0.00 1 1 0.589 0.589 0.589 0.58 0.9 
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Figure 1 (--) Theoretical ultimate packing fraction, Onult and (o) 
McGeary's maximum measured packing fractions for blends of 
monodisperse particles. 

3.2. Elucidation of the limits of the intrinsic 
modulus 

When the modulus of the filler material, Gf, is signifi- 
cantly greater than the modulus of the matrix, Go, 
such that Gf>>Go, then the intrinsic modulus defined 
by Equation 4 reduces to 

15(1 - Vo) (12) 
[~3 - (g~ 10Vo) 

In general, it can be shown [23] that the volume 
change of a homogeneous material is related to Pois- 
son's ratio as 

AV _ (1 ~2Vo) 3am (13) 
V 

where AV is the change in volume, V the original 
volume, E is Young's modulus, cy~ the uniform three- 
dimensional stress, and vo is Poisson's ratio. It is 
apparent from Equation 13 that a material will have 
a negligible volume change and be incompressible if 
the Poisson's ratio is approximately 0.5. If the assump- 
tion is made that a particulate composite is incom- 
pressible such that Poisson's ratio is vo = 0.5, then the 
intrinsic modulus defined by Equation 12 reduces to 

[67 = 2.5 (14) 

This is also the familiar result obtained by Einstein 
[24,25] as the intrinsic viscosity, [rl], of a liquid 
suspension~ The assumptions required' to reduce the 
intrinsic modulus to [G] = 2.5 were also the same 
ones specified by Einstein. The upper limit of the 
intrinsic modulus, [G], as described by Equation 12 
is shown in Fig. 2 for other values of Poisson's ratio, 
vo, ranging from 0-0.7. As indicated in this figure, the 
upper limit of the intrinsic modulus ranges only from 
1.88-3 when Poisson's ratio ranges from 0-0.6. Above 
a Poisson's ratio of 0.6 the intrinsic modulus increases 
more rapidly. 
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Figure 2 Calculated intrinsic modulus versus Poisson's ratio for 
modulus ratios >> 1. 
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Figure 3 Calculated intrinsic modulus versus Poisson's ratio for 
modulus ratios << 1. 

The second limit of generalized intrinsic modulus 
occurs when the modulus of the filler, Gf is essentially 
zero such that Gf<<G0. This condition would apply, 
for example, if the particles were voids with essentially 
no mass or strength. For  this case the intrinsic 
modulus reduces to 

- 1 5 ( 1  - v 0 )  
[ ~ 3  - (15) 

(7 - 5v0) 

The lower limit of the intrinsic modulus, [G], as de- 
scribed by Equation 15 is shown in Fig. 3 for values of 
Poisson's ratio, Vo, ranging from 0-0.7. It is interesting 
that the lower limit of the intrinsic modulus is negative 
when Poisson's ratio ranges from 0 _< v0 < 1. 

The limits defined by Equations 12 and 15 represent 
the extremes of the intrinsic modulus. Between these 
extremes there is one range of values where the intrin- 
sic modulus is positive and a second range where 
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Figure 5 Calculated intrinsic modulus versus modulus ratio and 
Poisson's ratio. 

the intrisic modulus is negative. In general, these 
ranges for the intrinsic modulus are 

[G] > 0 when 1 < Gf  < oo (16) 
�9 - -  _ _  G o  - -  

G f  

[G]_<0 when0_<G-7 -<1 (17) 

and 

The effect of Poisson's ratio, Vo, on the intrinsic 
modulus, [G], when the modulus ratio ranges from 
1 <_ Gr/Go <_ 50 is shown in Fig. 4. This figure indi- 
cates that the upper limit of the intrinsic modulus is 
nearly reached for most values of the Poisson's ratio at 
relatively low values of the filler to the matrix modulus 
ratio Gf/Go. 

Fig. 5 shows the effect of Poisson's ratio, Vo, on the 
intrinsic modulus, [G], when the modulus ratio ranges 
from 0 _< Gr/Go < 1. For modulus ratios ranging from 

0.5-1.0 the lower limit of the intrinsic modulus is 
nearly independent of Poisson's ratio. 

Based on the results presented in this section it is 
possible to consider a ceramic to be a two-phase 
composite with the void phase being either the matrix 
or the particulate phase. The simplified intrinsic 
modulus equations resulting for these cases would be 
Equations 12 or 15, respectively. However, because 
the Poisson's ratio of a void is undefined, the only case 
that can be considered is one in which the matrix 
phase is the ceramic itself and the voids are the partic- 
ulate phase. 

4. Revision of the generalized modulus 
equation to apply to the relationship 
between voids and modulus 

Because Poisson's ratio must be defined, the relation- 
ship between voids and modulus can only be con- 
sidered to be valid when the void phase is considered 
to be the particulate phase. For this configuration of 
Equation 3, a maximum void volume fraction must be 
defined to replace the maximum packing fraction limit 
in this equation. The maximum void volume fraction 
or critical pore volume, Pcrit,  o c c u r s  in the starting 
powder and can be measured relatively easily as the 
initial porosity, Pi, at the beginning of the ceramic 
powder processing. This initial pore volume, Pi, can 
also be minimized by carefully blending several mono- 
disperse particles when making up the starting pow- 
der, as discussed earlier. 

Because modulus/void literature data for ceramics 
often involves Young's modulus, the relationship be- 
tween Young's modulus and the shear modulus needs 
to be addressed. Young's modulus, E, the shear 
modulus, G, and Poisson's ratio, vo, are related 
through the following formulation [26] 

G - E (18) 
2(1 + Vo) 

As the shear modulus and Young's modulus are dir- 
ectly related, ratios of shear modulus are essentially 
equivalent to ratios of Young's modulus. 

Based on these considerations, then, the generalized 
modulus Equation 3 can be rewritten to describe the 
void/modulus relationships for ceramics as 

ln(E/Eo) = \~------~--1] [ \  P, ] for cy# 1 

(19) 
- 15(1  - Vo) 

[E] - - -  (20) 
(7 - 5Vo) 

For the case where cr --- 1, the resulting equation can 
be written as 

ln(E/Eo) = - -  [ E ] P i  In ( P i -  P ' ]  \ T , /  
or  

Pi - -  P ) -  [~m 
E = Eo 

(21) 

(22) 
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T A B L E I I Generalized modulus equation for selected values of the porosity interaction coefficient, cy 

Porosity interaction coefficient, c; Simplified form of generalized equation Original reference for equation 

[ - 1 Ln(E/Eo) = [El P -  ~ Wang [4] 

0 Ln(E/Eo) = [E]P Spriggs [8] 

05 = [1 - J - < S l j  

1 L n ( E / E o ) = - - [ E ] P i l n ( ~ )  Phani Niyogi [14] 

\ 2 /L(v,-P)=j 

Ln(E/Eo) = ([E] Pi~ V.3pp2 -- 3p2pI 
\ 3 /L (Pi-p)3-P3] 

where E is Young's modulus of a porous polycrystal- 
line solid, Eo Young's modulus of a non-porous poly- 
crystalline solid, [El is the intrinsic modulus, Vo Pois- 
son's ratio of the matrix, ~ the porosity interaction 
coefficient, P the porosity or fractional pore volume of 
solid, and Pi the initial porosity or volume fraction 
voids in solid. 

It is interesting to note that several of the modu- 
lus/void equations that have previously appeared 
in the literature can be obtained from Equation 19 by 
modifying the porosity interaction coefficient, o-. For 
example, Wang's [5] equation results when a = - 1, 
Spriggs [8] equation results when a = 0, and the 
equation of Phani-Niyogi [-14] results when o- = 1.0. 
Some of these options are indicated in Table II to- 
gether with the author that first noted the form of 
these equations. However, the interaction coefficient 
should be considered to be an adjustable constant that 
can be modified as required to fit the data. Fractional 
values of the interaction coefficient are perfectly ac- 
ceptable and have been found to be very useful in 
several instances [16, 18] to fit data adequately. 

To appreciate better the interaction coefficient, con- 
sider a MacLaurin series expansion of Equation 19 
which gives 

+ ( E ) { [ E ] 2 + 3 ( ~ ) [  El 

+ \ p , J \ - U - i / )  + " )  
(23) 

The first two terms are similar to the Einstein [24, 25] 
limiting terms for the viscosity of suspended particles. 
These first two terms are also the same ones for all 
possible values for the interaction of coefficient, o, and 
the initial porosity, Pi. It has also been found that 
o- and Pi always occur as a paired ratio for second- 
order and higher expansion terms. Because these two 
parameters are paired in second order and higher 
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terms, if a = 0.0, then the initial porosity, Pi, does not 
enter into the modulus calculation and it does not 
become a part of Spriggs [8] equation, consistent with 
Hasselman's [13] observation. In general, the particle 
interaction coefficient should be considered to be 
a measure of the interaction of the pore voids with 
each other during powder compaction. This interac- 
tion process can better be understood from a review of 
the theoretical considerations of Wang [4]. 

5. Application of the generalized modulus 
equation to Wang's theoretical modulus 
versus pore volume fraction data 

Two of the more significant analytical approaches 
attempting to understand the interactions of voids 
during a powder compaction process have been gener- 
ated by Knudsen [3] and Wang [4]. Knudsen ad- 
dressed the effect of voids on strength and Wang 
addressed the effect of voids on modulus. Both of these 
authors developed models to predict the effect of 
shrinking voids during the coalescing of spherical par- 
ticles. 

Knudsen [3] developed his theoretical model to 
address the coalescing of monodisperse spherical par- 
ticles over the full range of porosity for three possible 
packing arrangements; simple cubic, orthorhombic 
and rhombohedral. The primary assumptions used by 
Knudsen in making his theoretical calculations in- 
cluded: 

(1) the spherical particles draw together on their 
centres without changing their relative angular ori- 
entation with respect to one another; 

(2) each sphere flattens at the areas of contact with 
its neighbours; 

(3) each deforming sphere maintains its original 
volume, the displaced material redistributing itself 
evenly over the residual curved surfaces; 

(4) as the porosity of the specimen decreases, the 
size of the flattened areas of contact increases until the 
original spheres eventually become polyhedrons at 
zero specimen porosity; 
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Figure 6 Wang's schematic illustration of the sequence of events 
upon densification for a simple cubic array (reproduced by per- 
mission of author). (a) Cubic array, (b) in tension, (c) in shear, (d) 
sequence of events upon densification. 

(5) the strength of an individual sphere is stronger 
than the cohesion of the intergranular contact area, 
the latter being the weakest link of the material; 

(6) the strength of a porous material is proportional 
to the load-bearing contact area. 

Wang [4] addressed the theoretical evaluation of 
coalescing monodisperse spherical particles starting 
with the assumption of simple cubic packing and 
essentially the same assumptions used by Knudsen. 
However, Wang developed his theoretical model with 
modulus in place of strength in Knudsen's assump- 
tions (5) and (6). The initial density for simple cubic 
packing was defined as the density at which the 
spheres just touch giving an initial porosity of 
Pi -- 0.4764. To describe the compaction process ana- 
lytically, Wang [4] defined an angle, 0, that described 
the limit of the flattened areas as described in Fig. 6. 
Wang then derived the relationship between Young's 
modulus and a detailed function of the compaction 
angle, 0, that can be described in simplified form as 

(24) 

(where  E elf is the effective Young's modulus of a por- 
ous polycrystalline solid, Eo the Young's modulus of 
a non-porous polycrystalline solid, E(0) the differen- 
tial Young's modulus function of 0, Go the shear 
modulus of a non-porous polycrystalline solid, 

a constant, 0 the angle describing the limit of the 
flattened areas, P the porosity or fractional pore vol- 
ume of solid, and! Pi the initial porosity or volume 
fraction of voids in a solid. 

( a )  ( h i  

UT OF 
A L I G N M E N T  

( c )  ( d )  ( e )  

Figure 7 Wang's proposed effects of non-ideal alignment on the 
elongation in the z-direction (reproduced by permission of author). 
(a) The ideal case, (b) non-ideal cases, (c) misalignment, (d) shearing, 
(e) bending. 

Because the detailed relationship defining the func- 
tion E(O) has been described by Wang [4] elsewhere, 
further details of this function can be obtained from 
that reference. 

Three different compaction conditions were evalu- 
ated by Wang E4] using finite difference computer 
calculations by adjusting the constant ~ in Equation 
24. These three compaction modes, shown in pictorial 
form in Fig. 7, can be summarized in terms on the 
constant, ~, as in Table III. 

TABLE II I  

Case Compaction mode Value of e~ 

III 

Undistorted void compaction 0 
Misaligmnent with a shearing 1 
component 
Misalignment with a shearing component 
and a hinged bending component 2 

According to Wang, undistorted void compaction 
(~ = 0) occurs when particles are uniformly compac- 
ted without distortion and the maximum modulus can 
be achieved as a result of the compaction process. If 
misalignment of particles occurs during compaction, 
then Wang [4] claims that particle distortion causes 
distortion of the load-carrying capability and 
modulus reduction results. Wang [4] accounts for 
misalignment during compaction by multiplying the 
undistorted case by a correction factor that indicates 
particle distortion from an evaluation of void distor- 
tion. Misalignment during compaction involving 
primarily a shearing component was found by Wang 
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[4] to be accounted for by a correction factor of the 
form 

\ 7-i 
resulting in 0~-- 1. Wang found that the correction 
factor for a hinged bending component should be the 
same as that for the shearing component during com- 
paction, and when these two components are acting 
simultaneously, these correction factors must be 
multiplied together giving a = 2. Based on these con- 
siderations, then, Wang's constant c, is indicative of 
the interaction of the voids making up the porosity 
that is in some way a measure of the mode of particle 
deformation, which in turn Can effect modulus modifi- 
cation. 

At this point it is useful to compare the first deriva- 
tive of Equation 19 with Wang's detailed modulus 
calculation described by Equation 24. The first deriva- 
tive of the generalized modulus Equation 19 gives. 

dE I /(Pi-P)~ 1 ~ - ~ -  E [E] - - ~ -  (25) 

Before discussing the relationship between the con- 
stant a and the porosity interaction coefficient, (7, 
in Equation 25, consider the understanding that 
has been developed previously from experience with 
the particle interaction coefficient, a, as utilized 
in the generalized modulus equation described by 
Equation 3. 

In previous papers dealing with particles in viscous 
suspensions [16-18] and composites [20], the particle 
interaction coefficient, cs, was found to be a direct 
measure of the interaction of particles with each other 
and their in[eraction influence on the viscosity or 
modulus. For  these cases it was found that the term 
( g ) , -  q~)/q~, expressed to a power described by the 
particle interaction coefficient, cy, was more than ad- 
equate to describe the interaction of particles and their 
interaction effect on the shear modulus or viscosity. 
The initial derivation of this interaction process for 
particles leading to the derivative of Equation 3 has 
been discussed in some detail elsewhere [16] and will 
not be repeated here. 

However, Wang felt that the (Pi- P)/P~ term ap- 
plied only to Young's modulus component of the 
porosity interaction and that the term P/P~ was re- 
quired for the interaction with the shear modulus 
component. If the (P~ - P)/P~ term is applicable to 
both the shear modulus and Young's modulus compo- 
nents, then the differential described by Equation 25 
would be an improved description of Equation 24. For  
this case, the integral of Equation 25 would be de- 
scribed by Equation 19. 

One measure of this evaluation process is to see 
how well Equation 19 fits the theoretical computer 
data generated by Wang. Wang's [4] theoretically 
calculated modulus as a function of void content for 
each of his three different modes of compaction is 
shown in Fig. 8. The generalized void/modulus equa- 
tion described by Equation 19 has also been optimized 
for each of Wang's three cases and is also included in 
Fig. 8. Because each of the three cases described in 

4 4 5 8  
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0.0 . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 8 Wang's theoretical modulus values for three compaction 
modes and void/modulus equation results for three porosity inter- 
action coefficients. (D) case I, (at) case II, (o) case III. 

Fig. 8 used the same initial porosity, P~, and the same 
Young's modulus at zero porosity, Eo, then the 
calculation of modulus over the full range of porosity 
for these three cases was modified by adjusting only 
two constants;  the intrinsic modulus, [E], and 
the porosity interaction coefficient, c~. It is also 
interesting that Wang's theory does not include a con- 
stant equivalent to the intrinsic modulus, [E], even 
though it did include the other three constants. More 
importantly, it is remarkable that the full range of 
data in Fig. 8 was so easily fit with only two adjustable 
constants. 

Several surprises were identified when evaluating 
the constants obtained in fitting the data in Fig. 8. 
First, in going from Case I to case III it was found that 
the porosity interaction coefficients decreased instead 
of increased as expected by the Wang theory. How- 
ever, the ratio of the differences between the first and 
third and the first and second interaction coefficients 
were shown to give 

cYl - %1 _ 0.216 
- 1.43 (26) 

cy t - % 0.151 

According to Wang's theory, this ratio should have 
been 2.0, which is very close to the actual ratio ob- 
tained, even though the interaction coefficients de- 
creased instead of increased. This ratio does suggest 
though that the correction factor for a combined inter- 
action resulting from a shear component and a hinged 
bending component is nearly double the shear com- 
ponent consistent with Wang's model. But it was not 
necessary for the interaction constants to yield results 
expected from Wang's models. The primary value of 
Wang's theory is that it has shown that the porosity 
interaction coefficient, cy, can be a valuable indicator 
of the process of void compaction to obtain some 
measure of the mode of particle deformation which 
influences modulus modification. 



For the three cases evaluated by Wang in Fig. 8, the 
intrinsic modulus, rE], played a major role in the 
superior fit of the data and in many ways countered 
the effect of interaction constant, or. Both of these 
constants worked together to compensate for the ef- 
fect of Wang's interaction constant, ~. However, utiliz- 
ation of two constants with Equation 19 is still a sig- 
nificant improvement over using the computer iter- 
ation evaluation process required for Wang's detailed 
model. In addition, because the generalized 
void/modulus equation fits the data so easily, a signifi- 
cant amount of additional information is available to 
characterize solid-state processing that is not available 
in Wang's model. 

The surprise in the case of the intrinsic modulus was 
that the Poisson's ratios calculated from the intrinsic 
moduli data appear to be unrealistic. When calculated 
from Equation 20 the Poisson's ratio calculated for 
these different cases were as given in Table IV. 

T A B L E  IV 

Case Intrinsic modulus Poisson's ratio 

I - 1.23 0.72 
II - 2.62 - 1.75 

III  - 4.04 2.55 

While intrinsic moduli showed a consistent trend in 
going from case I to case III the calculated values of 
Poisson's ratio did not. Theoretical values of Poisson's 
ratio for porous solids have been calculated by Agar- 
wal et al. [153 as a function of porosity. The Poisson's 
ratio for these materials ranged from 0.163 to 0.255 
when the volume fraction of pores ranged from 0.438 
to 0.0303. It is apparent that the Poisson's ratios 
calculated from the intrinsic modulus values are sig- 
nificantly different from the values predicted by Agar- 
watet  al. and an explanation is needed to account for 
this difference. One explanation involves the formu- 
lation of the intrinsic modulus developed from 
Budiansky's modulus derivation for a particulate 
composite. 

5.1. Development of the intrinsic modulus 
from Budiansky's modulus equation for 
a particulate composite 

The evaluation of the intrinsic modulus, rE], of a gen- 
eral function, E(P), describing the modulus is, in gen- 
eral, evaluated from the second term of a MacLaurin 
series expansion that can be put in the following form 

E ( P )  

E(o) - 1 + LE(o)J e + L ~ J  

FE""(0~q 

+ L ~ J  + + ' LE(O) 4!J 
(27) 

where the intrinsic modulus, rE], is defined as 

[E (o ) ]  (28) 
[~ ]  = LE(o)J 

Budiansky [27] derived an equation that predicts 
the modulus of a particulate composite as a function 
of particulate concentration that Smith [28] showed 
could be written in the form 

G~ - Go [(8 - 10vo)Go + (7 - 5vr 
a f -  G 0 - L ~ -  10Vc)Gf + C (29) 

where Gc is the composite shear modulus, Gf the shear 
modulus of the filler, Go the shear modulus of the 
matrix, vc the Poisson's ratio of the composite, and 
q0 the particle volume concentration in the matrix. 
This equation results in a quadratic equation for the 
shear modulus of the particulate composite, Go. It can 
be shown that the first derivative of this equation can 
be described as 

dG~ _ V (Gf - Go)15(i -- v~) 1 
dcp L(7-- 5v~ ~ ~---l~v~)(GfGo/G~)_j + 

8(P 8vc [5 (Gc-  Go)+ 10Gf[1 ~ ----5 ~) -~(,{-(G~ ~ G ~  Go)q)_] 

(30) 

The evaluation of this derivative will result in an 
intrinsic modulus as described by a MacLaurin series 
expansion when q~ = 0. For this reason this derivative 
will be developed into a limit in two simplifying steps. 
First, if the filler is assumed to be a void, then Gf = 0. 
If Gf = 0 and q) = 0, Equation 30 reduces to 

a g e  _ [ Go15(1 - l 
L j 

(31) 

Now, if the ratio of shear moduli is equivalent to the 
ratio of Young's moduli then 

Gc E 
- ( 3 2 )  

Go Eo 

If the volume fi'action of particles is, in fact, the same 
as the volume fi'action of voids, then 

= P (33) 

Substituting Equations 32 and 33 into Equation 31 
gives 

dE/Eo 
dP 

[ - 1 5 ( 1 - v ~ )  l �9 1 
- - -  (7=5vc) J +cqP[ (7-5vc) J 

(34) 

At this point if it is assumed that E = E0 and vc = vo 
at P = 0, then Equation 33 reduces to the intrinsic 
modulus found earlier of 

- 1 5 ( 1  - %) 
[E] - (20) 

(7 - 5v0) 

This same result for the intrinsic modulus, rE], can be 
obtained in a much more straightforward manner 
using the three other primary derivations [28-31] 
relating modulus and the particulate concentration. 

However, it is not clear that Budiansky's form of .the 
intrinsic modulus described by Equation 34 can be 
evaluated from the simple assumption that E = Eo 
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and vo = Vo as the Porosity, P, approaches zero, Based 
on the peculiarity of the Poisson's ratios determined 
from the calculated intrinsic moduli in Fig. 8 it is 
expected that under certain circumstances that the 
intrinsic modulus will need to be determined from 
Budiansky's equation described by Equation 34. For  
these cases the intrinsic modulus may not be able to be 
estimated from the pure matrix properties. However, 
it is not yet clear how to estimate the influence of 
composite properties on the intrinsic modulus for 
these materials. At this time, the influence of com- 
posite properties on the intrinsic modulus  can best be 
estimated from experimental evaluations of the intrin- 
sic modulus. 

5.2. Evaluation of Wang's experimental 
results 

Wang [5] evaluated the Young's modulus of two sets 
of manufactured alumina rods with different levels of 
compaction and void content. The difference between 
these two series was the powder shape: the first series 
was comprised of spherical powder while the second 
series was comprised of "egg-shaped" powder. The 
modulus for both of these series was measured using 
either a sonic velocity technique or the static Young's 
modulus determined by a three-point bending test. 
For  the purpose of this analysis, no distinction was 
made between the two measurement techniques used 
to measure Young's modulus.  However, Wang's data 
for the modulus/void curves for these two types of 
powders were distinctly different, as indicated in 
Figs. 9 and 10. For  comparative purposes, the opti- 
mum fit of the data of spherical powder in Fig. 9 was 
evaluated using the generalized modulus Equations 19 
and 20 at three different values of the particle interac- 
tion constant, cy, at c~ = - 1, 0 and 1. As indicated in 
Table II  these values of the particle interaction 
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Figure 9 ([B) Wang's data for alumina rods prepared with spherical 
particles with void/modulus equation results for three porosity 
interaction coefficients. 
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Figure 10 ([5]) Wang's data for alumina rods prepared with "egg- 
shaped" particles and void/modulus equation results for two poros- 
ity interaction coefficients. 
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Figure 11 ( I )  Wang's data for alumina rods prepared with spheri- 
cal particles and void/modulus equation results for two porosity 
interaction coefficients. 

coefficient correspond, respectively, to the empirical 
equations proposed by Wang, Spriggs and 
Phani-Niyogi.  From these three results it is apparent 
that a particle interaction coefficient of cy = 1 gave the 
best fit of the data. However, the opt imum fit of the 
spherical particle data occurred for a value of a par- 
ticle interaction coefficient of cy = 0.9 as shown in 
Fig. 11. For  analysis purposes it is useful to compare 
the opt imum constants obtained for the spherical par- 
ticle data interaction coefficients of cy = 1 and 0.9. For  
these cases the results were: c~ = 0.9, [El = - 2.659, 
Pi = 0.405, E0 = 58.1 x 106 p.s.i. (4.01 • 105 MPa), av. 
% e r ro r=  9.85%; c~ = 1.0, [El = - 2.552, 
Pi = 0.415, Eo = 58.1 x 106 p.s.i. (4.01 x l0 s MPa), av. 
% error = 10.00%. It should be noted that the value of 
E0 found by Wang [5] was used for all data sets to 
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simplify the ar.~alysis. Only the values of c~, [E] 
and Pi were adjusted to optimize the fit of the data. It 
is interesting to note that the ayerage literature value 
of the monodisperse packing fraction for loose ran- 
dom packing was found by Lee [22] to be 
(q),, = 0.589). This packing fraction would give an 
initial void content of Pi = 1 - 0 . 5 8 9  = 0.411. This 
value is remarkably close to the value of the void 
content obtained for the packed spherical particles 
indicated above from the fit of the data in Figs. 9 
and 11. 

By  comparison the constants for the best fit of the 
"egg-shaped" particle data in Fig. 10 were: ~ = 1.05, 
[E] = - 2.617, Pi = 0.475, E0 = 58.1 x 106 p.s.i. (4.01 
x l0 s MPa), and av. % error = 6.14%. 

The fit of these "egg-shaped" particle data appears 
to have been slightly better than the fit of the data for 
the spherical particles as indicated by the average per 
cent error. A comparison of the constants for these 
two different types of particles indicates that the in- 
trinsic modulus, [E], and the particle interaction coef- 
ficient, cy, appear to be nearly the same values for 
these two types of particles. However, the initial 
volume fraction of porosity increased to Pi = 0.475 
for "egg-shaped" particles. While this value is close to 
the porosity of 0.476 found for cubic packing of 
spherical particles, it is not expected that egg-shaped 
particles pack the same as spherical particles. The 
increased value of porosity does appear to indicate 
that "egg-shaped" particles are a little more difficult to 
pack in a loose random arrangement than spherical 
particles. 

The empirical equation proposed by Wang can be 
described as 

ln (E/Eo)  = - (bP + cP 2) (35) 

where b and c are constants. The results calculated 
using this equation with the constants b = 1.46 and 
c = 0.982 and plotted in Figs. 10 and 11. Wang in- 
dicated that his recommended equation with the 
above constants should only be used below a void 
fraction of 0.32 because it did not fit the data above 
this void fraction. Wang's equation, described by 
Equation 35, can also be obtained from the generaliz- 
ed modulus Equations 19 and 20 for an interaction 
coefficient of cy = - 1 giving 

l n (E /Eo)  = [E] P - (36) 

While the value of [E] can be either negative or 
positive in this equation, the value of P~ cannot be 
negative according to the derivation in this paper. 
Using Wang's constant c = 0.982, a value of - 0.0743 
is obtained for the value of P~ using Equation 36. 
While this value of Pi does give a better fit of the data 
than the optimum value for the constant developed for 
the interaction constant cy = - 1 shown in Fig. 9, it 
still did not fit all the data as well as the results 
calculated for interaction coefficients of nearly t. The 
results of this study have shown that an excellent fit of 
the data can be obtained without making assumptions 
inconsistent with the theory presented. 

6. Conclusion ~ 

An equation recently developed by this author to 
describe the modulus of particulate composites as 
a function of the volume fraction of  particles was 
modified in this study to describe modulus as a func- 
tion of porosity. For  this analysis a ceramic was con- 
sidered to be a two-phase composite with the void 
phase being the particulate phase. By varying the 
porosity interaction coefficient, c~, this new generaliz- 
ed void/modulus equation was shown to be able to 
yield equations previously used to predict modulus as 
a function of voids for ceramics. For  example, Wang's 
[5] equation results when cy = - 1, Spriggs [8] equa- 
tion results when cy = 0, and the equation of 
Phani-Niyogi [14] results when cy = 1.0, 

The maximum void volume fraction was found to 
occur as the initial porosity, P~, at the beginning of 
their ceramic powder processing. One modification of 
the particulate composite equation to make it apply as 
a void/modulus equation was to replace the maximum 
packing fraction, %,, with initial porosity, P~. This 
initial pore volume, Pi, was also found to have the 
potential to be minimized by carefully blending sev- 
eral monodisperse particles when making up the start- 
ing powder. Based on an evaluation of McGeary's 
packing fraction data, it was found that a mixture of 
six different particle sizes should be able to produce an 
initial packing of particles down to less than 2% voids. 

Wang theoretically described the mode of porosity 
interaction during compaction with a Constant at to 
calculate the void/modulus relationship for three dif- 
ferent compaction conditions. While Wang's constant 

was a measure of the mode of porosity deformation, 
it was also important in measuring the influence of 
the effect of modulus modification. The generalized 
void/modulus equation developed in this study was 
found to fit each of Wang's three void/modulus inter- 
action cases over the full range of porosity, by adjust- 
ing only the intrinsic modulus, [E], and the porosity 
interaction coefficient, cy. The values of initial poros- 
ity, Pi, and Young's modulus at zero porosity, E0, 
were the same as used by Wang. While the porosity 
interaction coefficients, c~, obtained using the general- 
ized void/modulus equation to fit Wang's data did not 
agree closely with Wang's values of ~, the fit of the 
Wang's data was exceptionally good. However, 
Wang's models were able to show that the porosity 
interaction coefficient, cy, can be a valuable indicator 
of the process of void compaction to obtain some 
measure of the mode of porosity deformation which 
influences modulus modification. 

The surprise in the evaluation of Wang's three cases 
was that some of the Poisson's ratios calculated from 
the intrinsic moduli data appeared to be unrealistic. 
Based on the peculiarity of the calculated Poisson's 
ratios, the intrinsic modulus determined from 
Budiansky's equation Will probably need to be evalu- 
ated in some circumstances. For  these cases the intrin- 
sic modulus may not be able to be estimated from the 
pure matrix properties. It is not yet clear how to 
estimate the influence of composite properties on the 
intrinsic modulus for these materials. At this time, the 
influence of composite properties on the intrinsic 
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modulus can best be estimated from experimental 
evaluations of the intrinsic modulus. 

Wang also experimentally measured the porosity 
and Young's modulus of manufactured alumina rods 
prepared with two differently shaped powders. One 
series was comprised of spherical powder while the 
second series was comprised of "egg-shaped" powder. 
Only the values of or, I-El and Pi were adjusted to 
optimize the fit of the data while the value of Eo found 
by Wang was used for all data sets to simplify the 
analysis. The optimum fit of the spherical particle data 
occurred for a value of a particle interaction coefficient 
of cy = 0.9 and Pi = 0.405. It is interesting that this 
void fraction is very close to the average literature 
value of the void fraction Of 0.411 found by Lee for 
loose random packing of spherical particles. 

The fit of the "egg-shaped" particle data appears 
to have been slightly better than the fit of the data for 
the spherical particles, as indicated by the average 
per cent error. Nearly the same intrinsic moduli, I-E], 
and porosity interaction coefficients, or, were obtained 
for spherical and "egg-shaped" particles. However, the 
initial volume fraction of porosity increased to 
Pi = 0.475 for "egg-shaped" particles. While this value 
is close to the porosity of 0.476 found for cubic pack- 
ing of spherical particles, it is not expected that egg- 
shaped particles pack the same as spherical particles. 
The increased value of porosity does appear to indi- 
cate that "egg-shaped" particles are a little more diffi- 
cult to pack in a loose random arrangement than 
spherical particles. 

The generalized void/modulus the equation for 
c~ -- - 1 yields an equation that has the same form as 
Wang's proPOsed empirical equation that utilized two 
empirical constants, b and c. Wang's experimental 
data fitted with his equation gave a positive value for 
the constant c of 0.982 which corresponded to a nega- 
tive value of Pi of - 0.0743. Unfortunately, a negative 
value of the initial porosity Pi was not defined in the 
theoretical considerations developed in this study. 
While this value of P~ does give a better fit of the data 
for the interaction constant c~ = - 1, it still did not fit 
all the data as well as the results calculated for interac- 
tion coefficients nearer 1.0. 

The results presented here have shown that an ex- 
cellent fit of most void/modulus data can be obtained 
using the generalized void/modulus equation de- 
veloped in this study without making assumptions 
inconsistent with the theory presented. 
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